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Overview
Can AIRS + CrIS contribute to climate level studies?

Process data in radiance space as long as possible to ensure
traceable accuracy

Strive for “100%” sampling, or at least no scene-dependent
sampling

Instrument stability (AIRS)

Radiometrically connect AIRS with CrIS

Lower radiometric accuracy requirements by use of PDFs

Do AIRS and CrIS contain the same information?

In many cases still need to retrieve geophysical quantities:
use zero as a-priori when possible

Utilize climate quality data from other sources

Emphasize well characterized measurements of trends over
standard geophysical products that require additional information.
Besides trending, what science can be done with this approach?
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CLARREO LongWave Requirements

The Economic Value of an Advanced Climate Observing System 
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Conclusion:" An advanced higher accuracy climate observing system would return $50 for every $1 invested in the improved observations !

Why? 
Science is an economic investment by the public.  We will be managing Earth’s 
climate until civilization moves elsewhere.  We currently have no national or 
international climate observing system, nor a plan to create one.   Should we 
invest in one? Is it worth it?!
!
What is  the economic value of  an advanced climate observing system? How 
would you estimate it?  !
!
We have a few traceable estimates of the economic value of weather prediction 
for severe storms, hurricanes, floods and droughts.  Climate scientists often say 
that the results from their research “will inform societal decisions with trillion 
dollar impacts”.  !
!
But is this statement verified and traceable in any way?  How could we quantify 
an economic value to climate science?  Recall that climate change science value 
exists  decades  into  the  future.   Its  value  has  to  be  treated  as  a  risk/benefit 
economic analysis.  A rigorous analysis must take into account the uncertainties 
in climate science, economic impacts, and policy (see Figure 1 below).!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
Science value and economic frameworks are potentially valuable for strategic 
planning  of  the  Earth  observing  system,  as  well  as  communicating  climate 
research  value  to  society.   We  present  in  this  paper  a  new methodology  to 
estimate the economic value to society of advanced climate observing systems.!

How? 

In this case the factor of 4 uncertainty in climate sensitivity causes a factor of 
16 uncertainty in long term economic impacts, which leads to inefficient and 
uncertain solutions for climate change.!
!
Society (and climate science)  views past  climate change through two sets  of 
"fuzzy" lenses.  The first is natural variability in the climate system which acts as 
noise to confuse early signals of anthropogenic climate change.  The second is 
uncertainty in our observations of climate change, including drifting calibration 
of  instruments  or  orbit  sampling  uncertainties.   Figure  2  below  shows  an 
example  of  these  uncertainties  for  observing  one  of  the  critical  measures  of 
climate sensitivity: changes in the amount of global mean solar energy reflected 
back to space by clouds as climate changes.  !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
The black line shows climate trend uncertainty for a perfect observing system 
limited only by one fuzzy lens: that of natural variability.  The dashed lines add 
the absolute calibration uncertainty of the current highest accuracy cloud related 
space  instruments  including  MODIS (cloud  physical  properties)  and  CERES 
(broadband reflected solar radiation to observe SW CRF directly).  The blue line 
shows the accuracy from the future CLARREO (Climate Absolute Radiance and !
Refractivity Observatory) mission which advances accuracy a factor of 5 to 10 
over current instruments (Wielicki et al., 2013).  !
!
CLARREO is designed to serve as reference calibration spectrometers for the 
entire  reflected solar  and thermal  infrared spectrum.  Its  orbit  is  designed to 
underfly all geostationary and low earth orbit satellites with matched time/space/
angle  of  view  observations,  and  thereby  provide  the  SI  standard  reference 
calibration system in orbit to allow instruments such as CERES, MODIS, VIIRS, 
CrIS,  IASI,  Landsat  and  others  to  maintain  highly  stable  calibration  over 
decades, even if gaps in observations occur (Wielicki et al., 2013)!
!
The IPCC climate model range of trend values are shown in the green arrow at 
the lower left  of  Figure 2.   Figure 2 shows that  advances in accuracy can 
advance by 20 years the ability to observe cloud feedbacks and thereby narrow 
uncertainty in climate sensitivity.  !
!
!

Figure 3 shows a similar example for observations of global mean temperature 
trends from space-borne instruments.  The conclusions are similar.!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
Given these results, what would an advance of 15 to 20 years in climate change 
knowledge  mean  in  terms  of  economic  impacts  of  climate  change?   The 
schematic below shows how to test such a concept.  The concept uses the climate 
accuracy framework from Wielicki  et  al.  2013 developed for  the CLARREO 
mission, and combines it with the SCC, 2010 estimates of future climate impacts 
for varying levels of warming, and the DICE 2009 integrated assessment model 
(Nordhaus,  2008)  which  links  models  of  climate  physics,  economic 
development,  and  economic  impacts.   The  schematic  below  shows  the 
dependence  of  economic  impacts  from  climate  change  on  societal  decision 
points, which are in turn dependence on the accuracy of climate observations.!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
The DICE model  is  run for  1000s  of  simulations  varying climate  sensitivity 
(SCC,  2010  distribution),  natural  variability  realizations,  and  emissions 
scenarios.!
!
!
!
!

Before we discuss the results, we need a quick version of Economics 101.  First, 
the global Gross Domestic Product (GDP) per year is about $70 Trillion U.S. 
dollars.  Second, economics calculations use a concept called Net Present Value 
(NPV) to equate investments and returns over long time intervals.  To do this, a 
Discount Rate is used, which varies in the SCC, 2010 report from 5% to 3% to 
2.5%.  The effect of using the nominal 3% Discount Rate is that the economic 
benefits  gained in the future are discounted by 3% per  year,  so that  benefits 
gained 50 years from now are "discounted" by a factor of 1.0350, or a factor of 
4.4.  This means that economic benefits 50 years into the future are decreased by 
a factor of ~ 4.4, while benefits 100 years into the future are decreased by a 
factor of ~ 20.  Finally, the recent financial crisis affected worldwide GDP by a 
few percent.  This is similar to the economic impacts of climate change in the 
second half of this century, which are expected to range from 0.5% to 5% of 
GDP per  year  depending  on  climate  sensitivity  and  the  amount  of  warming 
realized.  Therefore future climate change impacts can range from $0.4T to 
$3.5T per year. !
!
The calculations in this study use a baseline scenario of a societal trigger when 
95% confidence is reached for a global average temperature increase of 0.2C/
decade,  and an advanced full  climate  observing system begins  in  2020.   All 
initial calculations use a simple switch from higher to lower emissions scenarios.!
!
!
!
!
!
!
!
!
!
Table 1 summarizes the results, and shows a NPV of $12 Trillion U.S. dollars 
for the nominal 3% discount rate.  While the CLARREO example of advanced 
accuracy  has  been  used  in  this  initial  estimate,  society  would  never  base  a 
decision on any one set of instruments, so this economic value should be viewed 
as  that  of  an  advanced  full  Climate  Observing  System,  which  CLARREO 
would be a key part of.  If we estimate that such a system would cost 4 times the 
current  investment  in  world  climate  research  of  about  $4B/yr.,  then  over  30 
years, the additional cost in NPV would be about 1/50th of the benefits shown in 
Table 1. Every $1 invested returns $50.  We also examined sensitivity of the 
results to the assumed baseline parameters by changing the warming rate from 
0.2C to 0.3C/decade for the societal decision trigger, by varying the statistical 
confidence required (80 to  99%) and the severity  of  the  emissions  reduction 
scenario (moderate or severe).  In all cases, the economic value remained within 
about  30%  of  the  values  in  Table  1.   The  results  of  this  study  have  been 
published in the Journal of Environment, Systems, and Decisions (Cooke et al., 
2013).  Future developments of this new framework will use recent updates in 
the social cost of carbon estimates, add mitigation costs,  improve the realism of 
societal decision triggers and consider the uncertainties of additional key climate 
change observations including ice sheets, aerosol forcing, and carbon cycle. !
!
References!
Wielicki, B. A. et al., Bull. Amer. Met. Soc. Oct. 2013!
Cooke, R. et al., J. Environ. Sys. Decisions, 2013, open access online.!
US Interagency Social Cost of Carbon Memo, 2010!
Nordhaus, W.D. "A question of balance: weighing the options on global warming 
policies". Yale University Press, New Haven, 2008!

Results 

Figure'1'

Figure'2'

The uncertainty of societal decisions on climate change is strongly affected by 
the uncertainty in the future predictions of climate change.  For example, the 
90% confidence bound for equilibrium climate sensitivity is a factor of 4 (IPCC, 
2013).  Climate sensitivity defines the relationship between an increase in carbon 
dioxide  in  the  atmosphere  and  the  amount  of  global  surface  air  temperature 
change.  Studies of the economic impacts of climate change (Interagency Social 
Cost of Carbon Memo, 2010, hereafter SCC) suggest a quadratic relationship 
between amount of global temperature change and the magnitude of economic 
impacts.  !

Figure'3'

Figure'4'

Table'1'

Can we lower AIRS/CrIS effective calibration accuracy? Yes?
Is the Trend Uncertainty (mean radiance change) the proper
metric? Use PDF/quantile analysis to enhance detection.
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AIRS Stability: Clear Subset Radiance Rate Fits
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Is AIRS stable enough? 10-Year linear rates say yes.
Note: Not frequency corrected, no L1c
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OEM Fit Results for Clear Ocean Subset
All a priori = 0, covariance = ∼3X nominal variability
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AIRS SST - SST CDR: +0.004 ± 0.006 K
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Connect AIRS to CrIS: SNO Comparisons at 900 cm−1

Ensure agreement versus scene temperature
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More work needed. See talk on Wed. on AIRS-CrIS SNO
intercomparisons where AIRS is converted to CrIS ILS.
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H. Motteler: AIRS –> CrIS ILS Conversion
Robust approach uses AIRS Measured ILS functions.

Convert AIRS ILS to CrIS for long-term radiance record.
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This comparisons shows SNO intercomparisons for 1 day, Oct. 1,
2012. A key part of this work is JPL AIRS Project L1c product,
removing effects of popping channels.
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AIRS and CrIS Temperature Kernels, Tropical Profile
Left: AIRS, Right: CrIS

Assumes no RTA or instrument biases, errors. Unrealistic to do
retrievals to CrIS noise level!
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AIRS and CrIS Water Vapor Kernels, Tropical Profile
Left: AIRS, Right: CrIS
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AIRS and CrIS: T(z) and H2O (z) Degrees of Freedom
Left: T(z), Right: H2O (z)
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Again, cannot in practice take advantage of higher CrIS DOF’s due
to other errors.
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PDF Measurement Approach
Do not average all-sky radiances.
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Retain more information: PDF rates,
not Radiance Rates

Averaging clear with cloudy
scenes destroys information

Bin (create PDFs) versus
variable related to cloudiness

I used 1231 cm−1 channel B(T):
clearest window channel

Data Set: 10 years of AIRS, only
FOVs on each side of nadir

Bins of B(T) 1231 cm−1, from
190:1:320K

Mean BT spectra in each bin are
stable versus time

All the information is in the
PDFs in each bin
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PDF Examples

1231 cm−1 Global Ocean 1231 cm−1 15-25◦Latitude
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Diurnal Variability of PDF Rates (5-year rates)
PDFs divided by 25; Mean BT Rates (AIRS) -0.03K, -0.08K (IASI) 0.01K, 0.01K, all 2σ ∼ 0.15K
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ERA+SARTA RTA Comparisons to Observations
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High cloud scenes removed for 1441 cm−1 bias analysis.
Smoothness of 1231 cm−1 bias suggests that ECMWF cloud fields

are quite good statistically and can possibly be used to generate a
priori. Lower cloud forcing in ECMWF may be due to spatial
resolution differences.
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Marine Boundary Layer Cloud: Obs vs ERA

Obs: 6-12K Forcing Calc: 2-7 Forcing

ERA grid size versus AIRS footprint may be part of these
differences.
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Quantile vs PDF Approach

Previous approach: B(T) 1231 cm−1 is independent binning
variable: find PDFs of B(T) 1231 since closely correlated with
clouds.

New approach: Make cumulative probability distribution
independent variable: find mean value of B(T) 1231 in each
“quantile” bin.

Leads to easier interpetation

Quantiles (cumulative probability distribution): 0:dp:1. Sort B(T) in
ascending order and fill bins.

Usually plot B(T) that goes with each dp bin, rather the cumulative
probability.
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SARTA Scattering RT Algorithm

DISORT accurate (N streams) far too slow

SARTA scattering based on: Chou, M.-D. and Lee, K.-T. and
Tsay, S.-C. and Fu, Q., Parameterization for Cloud Longwave
Scattering for use in Atmospheric Models, J.Clim, v12 (1999)
PCLSAM

Scattering OD is "effective" OD that depends on Extinction,
albedo, asymmetry
τscatterer(ν, lay) = f (E1(τ, r),ω(r),g(r))
where E1 is extinction for 1 g/m2

τ(ν, lay)→ τatmgases(ν, lay)+ τscatterer(ν, lay)
for two clouds with random overlap (based on NWP cloud
cover field)
r(ν) = c1r1(ν)+ c2r2(ν)+ c12r12(ν)+ cclrrclr(ν)
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Scattering Parameters

Scattering databases as function of species (aerosol, water, cirrus),
particle size (eg 0.3 µm to 10 µm), wavenumber

Dust : (Mie) databases, different species, mostly use
Volz(1873) refractive indices, but can bring in eg kaolinite,
illinite etc (deff = 0.3 to 10 µm, typically 4 µm)

Volcanic ash : (Mie) databases, basalt or andesite

Water : (Mie) databases, refractive index from OPAC database
(deff typically about 20 µm); lognormal particle size
distributions

Ice : Ice Aggregates or Hexagonol Plates, (deff 7 µm to 200
µm) (Anthony Baran, UKMO)

Ice : New General Habit model scattering database (Ping
Yang/Bryan Baum)
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How "good" is PCLSAM

Compared it to PCRTM (based on DISORT)

also uses Ping Yang/Bryan Baum ice scattering parameters

(Mie) water cloud with fixed 20 um effective size

50 subcolumns Maximum Random Overlap wrapper

SARTA TwoSlab with PCLSAM uses 4 streams, much faster
than using 50 streams

Can easily do (finite difference) Jacobians with SARTA TwoSlab

Doing Cloud Jacobians with 100 layer SARTA code shows
typically 2-4 degrees of freedom, so our parameterization of
(cloud top, cloud amount) is "adequate" and captures cloud
microphysics

SARTA TwoSlab - PCRTM MRO) ' -0.25 ± 2 K



20

Overview AIRS Stability AIRS vs CrIS PDF Approach Cloudy RTA PDF Examples Cloudy OEM Retrievals

SARTA: 2-cloud layer RTA

100-layer cloud RTA too slow for our purposes. Convert
re-analysis cloud fields into two layers (water, ice). Top of cloud
where optical depth is near unity. Results very similar to PCRTM
(and SARTA 100-layer), far closer than differences to observations.
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ERA –> SARTA versus 1231 cm−1 Obs
L2 all Q/A Very Good for Window Channel

Observed B(T) ERA B(T)

L2 Calc (all) L2 Calc (good Q/A)
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10-Year Linear Rates of 1231 cm−1 Channel

Linear rate is a proxy for climate trends, uncertainties in mid-
and lower-latitudes due to inter-annual variability.

Highlights why CLARREO approach (all sky averages) will hide
information.

Uncertainties dominated by inter-annual variability.

Allows examination of cloud vs clear behavior

Can do similar analysis on anomalies

Procedures

Subset data to some area (TWP, Arctic, etc.)

Daily: Find average B(T)s on fixed cumulative probability grid
(quantiles)

Fit these time series (about 120 total) to remove seasonal
component, and determine linear rate-of-change

Examine difference between observed and simulated (from
ERA) linear rates
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Tropical Western Pacific
10-Year Rate of 1231 cm−1 Channel; blue:obs, green:ECM clear calc, red:ECM cloud calc
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Tropical Western Pacific: Hot BT Zoom
10-Year Rate of 1231 cm−1 Channel; blue:obs, green:ECM clear calc, red:ECM cloud calc
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Arctic PDF 10-Year Rates
By Season; blue:obs, green:ECM clear, red:ECM cloudy

Winter Spring

Summer Fall
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Zoom of Artic Summer
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Amazonia

Mean rate: -0.09K ± 0.05K
Good agreement with ERA, lower cloud forcing
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OEM Retrievals
March 11,2011; G039:DCC clouds near Indonesia, G137: MBL clouds off Namibia

Convert ECMWF clouds (67 layers) –> SARTA 2-layer clouds

Compute simulated ECMWF radiances with SARTA

Find ECMWF window radiance in granule closest to obs and
use it for retrieval cloud; Fix cloud tops (hard part)

Use parameterizations for ice, water cloud particle size

A priori: ECMWF WV(z),T(z),O3(z),T_surf

A priori WV(z) = 10%, column O3 and cloud amount = 10%,
diagonal for now

First fit for cloud ice/water only

Second fit for WV(z) and column O3, keeping clouds fixed

At most 10 iterations allowed, can update jacobians

T(z) not fit, or emissivity

In general, you can fit the data with 2 slab clouds!

This is a 3-week effort!
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Differences from PDF Approach

This work: a priori is ECMWF, assuming 1K, 10% errors for T,
water, clouds, etc. Observation error is noise, but forward
model and instrument error can dominate.

Trends using PDFs: a priori is zero, with covariances of maybe
3x estimated range of climate (works OK for clear scenes,
earlier work). Probably fix dCO2/dt. Observation error is
inter-annual variability. Forward model bias largely cancels.
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Granules Examined: 1231 cm−1 Images

G039 Obs G137 ECM Calcs for Good QA
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G039 Fits

G039 Obs G039 ECM Calcs
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G039 Stats: Overview

Raw Std Fitting Stats
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G039 Stats: Closure
L2 is 60% Sampling, UMBC Fit is ∼100% !!

Fit Bias Fit Std
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G137 Stats: Closure
L2 is ??% Sampling, UMBC Fit is ∼100% !!

Overview Water Band Zoom
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ECM boundary cloud placement incorrect for MBL clouds, causing
window fitting errors.
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G039 Water Retrievals

Column ECMWF Column UMBC
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Conclusions

Single channel PDF analysis shows promise, good agreement
with ERA re-analysis for clear scenes.

Some differences (versus time) seen in tropical oceans, and in
polar regions.

Move to water vapor channels

And then move to geophysical retrievals using full spectra

Need average cloud parameters for Jacobians for PDF bins
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